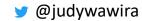
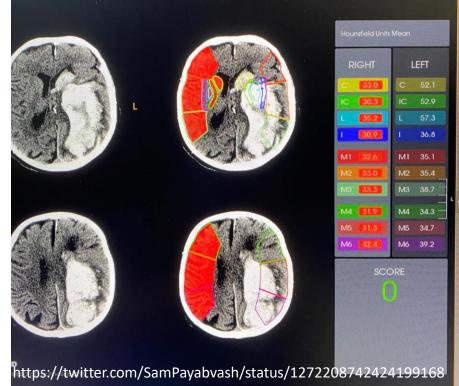
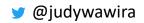


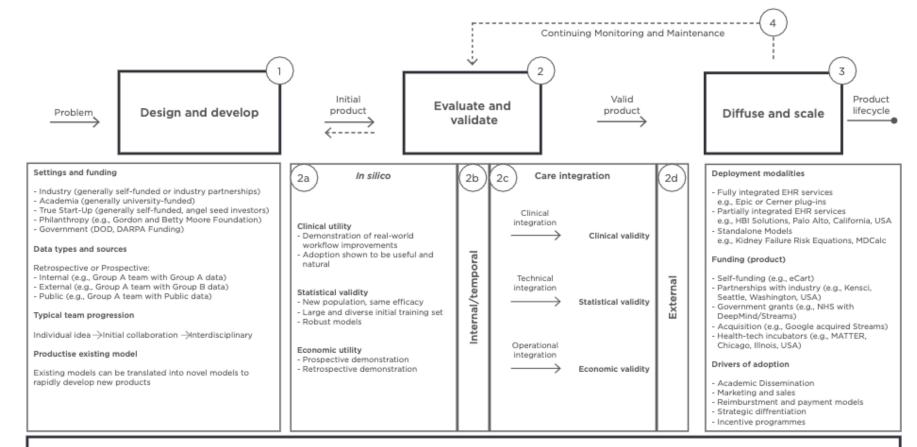
Training, Validation and Generalizability Pre-Market Assessment and Validation


Dr. Judy W Gichoya
Assistant Professor (IR + Informatics) Emory University
Co-Director @ HITI Lab

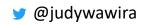
- RSNA Trainee Editorial Board
- RSNA CIRE committee
- ACR AI Advisory council
- ACR Informatics Commission
- SIIM Global outreach committee
- Softbrew LTD Global health consulting



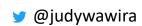

Objectives


- EMORY
 UNIVERSITY
 SCHOOL OF
 MEDICINE
- ORY
 ERSITY
 OOL OF
 ICINE
 Interventional Radiology & Image-Guided Medicine
 Department of Radiology
 and Imaging Sciences

- Brief Background
- Reality check
- Future



Regulatory



- RSNA 2019 173 self identified companies
- DSI FDA approved algorithms list 62 companies
- FDA approval not enough! & != clinical utility
- 6 % external validation with multi-institutional data or prospective validation
- Pubmed "Radiology" + "Al" vesus "Radiology" + "Al" + "clinical practice"
 OR "clinical trials"
- Clinicaltrials.gov "Radiology+AND+AI" 66 registered trials, 10 in practice

- 10 records for randomized clinical trials, 2 published
- 81 non randomized trials 9 prospective , 6 tested in real life setting
- Median experts 2-9
- Limited access to datasets + code
- High risk of bias n= 58
- < 50 % adherence for 12 of 29 TRIPOD items
- N = 31 need for prospective trials

Nagendran et al - Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies

June 2020

entional Radiology & -Guided Medicine ent of Radiology ing Sciences

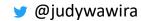
While being swamped during weekend call, I had few moments of amusement with epic failures of computer assisted diagnosis! picking up streak artifact for bleed while missing actual hemorrhage; calling ASPECT of 0 in right hemisphere because of large hematoma on the left #AI

NOT FOR CLINICAL VIS

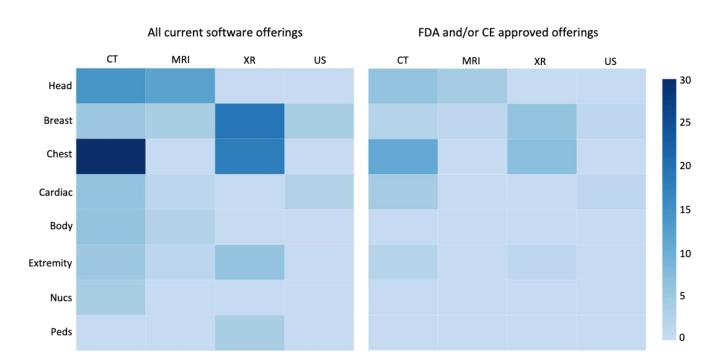
| Internal Control of Vision | Internal Control of V

12:46 PM · Jun 14, 2020 · Twitter for iPhone

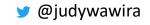
RapidAI @RapidAI · Jun 17

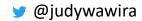

Replying to @SamPayabvash

@SamPayabvash the ASPECTS application can give an ASPECTS score in the presence of LVO. It is not designed to find hemorrhages. Our ICH module is FDA cleared to notify physicians of the suspicion of hemorrhages as small as 1ml. You can find more info here:



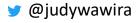
Intracranial Hemorrhage Detection in Minutes (ICH... Rapid ICH uses AI technology to quickly triage non-contrast CT (NCCT) cases and notify clinicians of ... & rapidai.com





- Motivation for AI purchasing \$\$\$
- Data Ownership and Privacy local versus cloud
- Cost structures subscription, capital purchase?
- Reported model performance internal testing

Customers Who Bought This Item Also Bought


The State of Radiology AI – Considerations for Purchase Decisions and Current Market Offerings

Subspeciality	Modalty	Value Proposition	Validation methodology	Data Source	Performance Metrics	Implementation	Cost Structure
Head/Neck	ст	Quality Improvement	Validation set size	International	Overall AUC	Localized	Free pilot Duration:
Breast	MRI	Efficiency	Validation data source	Domestic	FP Rate	Cloud based	Per case
Chest	XR	Triaging	Number of readers	Academic	FN Rate	Processing time	Per user
Cardiac	US	Diagnostic	Definition of ground truth	Community	PPV	Anonymization (local or cloud)	Per workstation

Subspeciality	Modalty	Value Proposition	Validation methodology	Data Source	Performance Metrics	Implementation	Cost Structure
Body			Quantitative thresholds used for ground truth (hemorrhage size, nodule size, etc).	Number of sources for training data	NPV	Results displayed as new series	Per Site
MSK/Spine				Scanner/Machine Variability		Results displayed as heat map/other	
Pediatrics						Exports results to dictation software	
Nuclear						Ability to edit findings	

ACR AI Lab

Interventional Radiology & Image-Guided Medicine
Department of Radiology
and Imaging Sciences

Define Use Cases

Explore existing use cases for AI in medical imaging, or propose your own idea for a use case.

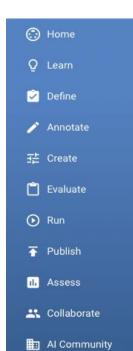
Annotate

Create structured data sets around specific AI use cases by annotating images.

Create

Develop your own Al model for a specific Al use case. Select the use case and the data set, preprocess the images, define the architecture, and train and test your model.

Define Problem



Configure Model

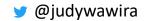
Train and Test

Run

Run inference on selected cases to test the performance of AI models.

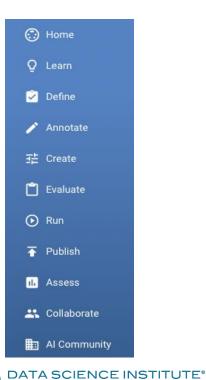
Evaluate

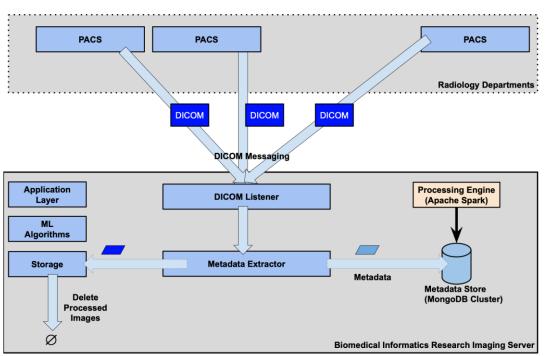
Compare the performance of two models on the same data set.


Al Community

Explore ACR AI-LAB™ Ecosystem, Demonstrations, Commercial Participation and Community resources.

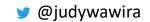
Collaborate


Share models, share datasets, and help crowd-source image annotations.

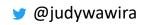


The Emory Experience - Niffler

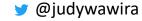
The Emory Experience



Interventional Radiology & Image-Guided Medicine
Department of Radiology
and Imaging Sciences



- Dong Wook Kim, Hye Young Jang, Kyung Won Kim, Youngbin Shin, and Seong Ho Park. "Design characteris-tics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medicalimages: results from recently published papers". In:Korean journal of radiology20.3 (2019), pp. 405–410
- FDA Cleared AI Algorithms American College of Radiology.https://www.acrdsi.org/DSI-Services/FDA-Cleared-AI-Algorithms. (Accessed on 06/06/2020).
- ACR AI Lab https://ailab.acr.org/Account/Login
- Kathiravelu, P., Sharma, A., Purkayastha, S., Sinha, P., Cadrin-Chenevert, A., Banerjee, I., & Gichoya, J. W. (2020). Developing and Deploying Machine Learning Pipelines against Real-Time Image Streams from the PACS. arXiv preprint arXiv:2004.07965.
- Nagendran, Myura, et al. "Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies." bmj 368 (2020).
- Trivedi et al "The state of Radiology AI Considerations for Purchase Decisions and Current Market Offerings" Accepted for publication June 2020 in Radiology:AI
- Sendak, Mark P., Joshua D'Arcy, Sehj Kashyap, Michael Gao, Marshall Nichols, Kristin Corey, William Ratliff, and Suresh Balu. "A Path for Translation of Machine Learning Products into Healthcare Delivery." *EMJ Innov* (2020).



judywawira@emory.edu http://hitilab.org

